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Algebraic multigrid (AMG)

• Iterative method for solving linear equations
• Commonly used as a preconditioner
• Idea: capture error at multiple resolutions using grid transfer 

operator:
– Smoothing damps the oscillatory error (high energy) 
– Coarse grid correction reduces the smooth error (low energy)
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Increased communication

Coarse grids typically have increased communication

• Fewer flops per node

• Denser coarse matrices
For instance, for elasticity number of nonzeros per row:

81 → 206 → 373 → 691



Sparse allocations

Large clusters are used by many users who can submit thousands 
of jobs. Therefore, to reduce time in queues many schedulers can 
construct sparse allocations. These could be problematic:
• Messages can travel long distances between two processors;
• Some links can become oversaturated
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Other approaches

• Non-Galerkin AMG
J. Schroder, R. Falgout

• Additive AMG
P. Vassilevski, U. Yang

• Coarse level data redundancy
H. Gahvari, W. Gropp, K. Jordan, M. Schultz, U. Yang



Multiple reasons to do repartitioning:

• Mitigate increase in complexity of SA-AMG
Uncoupled aggregation without repartitioning produces inner-
boundary effects

• Improve load balancing

• Reduce communication
Fewer parts => less communication

Why repartitioning?



Repartitioning steps

The decision to repartition depends on several heuristics:
• Load imbalance
• Load per processor (i.e., number of DOFs/processor)

The repartitioning itself is done in several stages:
1. Compute new partitions

2. Map partitions to remaining processors

3. Do data redistribution

Repartitioning affects:
• Setup phase
– Data redistribution
– Coarser levels construction

• Solve phase
– Matrix-vector multiplication



Minimizing data contention

Goal: improve solve time on sparse allocations

Given data:
• Part coordinates (averaged)
• Application communication graph
• Processor (core) coordinates

try to improve the following metrics:
• Average hop count
• Congestion

assuming that:
• Messages always take the shortest route
• Only static routing (no dynamic)
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Minimizing data contention

Avg hop count: 2.02
Congestion: 5.03

Avg hop count: 1.32
Congestion: 3.12



Bipartite graph matching

Goal: minimize setup time (and, possibly, solve time) for 
any allocation

Given data:
• Number of each part DOFs for each subdomain

try to improve the following metrics:
• Number of DOFs staying on the same processor

assuming that:
• Less redistribution leads to faster performance



Bipartite graph matching
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Bipartite graph matching

Partitioning



Results
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Model problem: Laplace3D, 7-point stencil



Conclusions / Future work

• Mapping of tasks to processors matters

• Reducing data migration seems to be more important than 
reducing solve kernels

• Careful mapping of data to processors may bring substantial 
benefits

• Combine two approaches for robustness

• Examine other mapping algorithms
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